Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration.
نویسندگان
چکیده
Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomic-scale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included.
منابع مشابه
Sol-Gel Synthesis, in vitro Behavior, and Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation and Proliferation of Bioactive Glass 58S
Background: Bioactive glasses 58S, are silicate-based materials containing calcium and phosphate, which dissolved in body fluid and bond to the bone tissue. This type of bioactive glass is highly biocompatible and has a wide range of clinical applications. Methods: The 58S glass powders were synthesized via sol-gel methods, using tetraethyl orthosilicate, triethyl phosphate, and calcium nitrate...
متن کاملComposite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review
Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared ...
متن کاملBone regeneration in dentistry using bioactive glass 49S :A review
Background and Aim: The aim of this study was to evaluate the effect of 49S bioactive glass nanoparticles made by sol-gel technique on bone regeneration in dentistry. These glass are especially used as bone repair materials because of their properties such as biodegradability and bioactivity, so they seem to be successful in orthopedic and dental surgery. Material and Methods: Acoording to this...
متن کاملMorphology expression and proliferation of human osteoblasts on bioactive glass scaffolds
Bioactive glass was supposed as a biodegradable material and designed as a scaffold to be used for bone reconstruction or regeneration. Bioactive glass scaffold with pore sizes ranged in 100-400μm in diameter was fabricated by sol-gel method, and the biocompatibility evaluation of bioactive glass scaffolds was also performed by culture in vitro models. Cells cultured in the extracts of bioactiv...
متن کاملIn Vitro Assessment of Laser Sintered Bioactive Glass Scaffolds with Different Pore Geometries
The pore geometry of bioactive glass scaffolds intended for use in bone repair or replacement is one of the most important parameters that could determine the rate of bone regeneration. The pore geometry would also affect the mechanical properties of the scaffolds and their rate of degradation. Scaffolds with five different architectures, having ~50% porosity, were fabricated with silicate (13–...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 370 1963 شماره
صفحات -
تاریخ انتشار 2012